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The present data sets were created and published within the project "Glassist - Smart-
Glass-based Assistance System for Machine Tools". The project is being carried out in 
collaboration with the project partners Nuromedia GmbH, Oculavis GmbH, Innolite 
GmbH and Starrag Technology GmbH. The data sets can be assigned to series of exper-
iments. The individual experiments were carried out with a process-integrated measuring 
system on a machine tool under process parameter variations. In this documentation, the 
data sets are described in detail and notes on interpretation are presented. 
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1  Introduction  

The present data sets represent data obtained from experiments, which were recorded 
with a CNC milling machine with variation of process parameters. The data sets are to 
serve as a basis for developing algorithms to be able to determine various anomalies 
online at the cutting time. In relation to the algorithms, analytical and also machine 
learning methods are to be used here. The aim is to detect anomalies or deviations to 
the machine data based on the information contained in the data sets. To obtain the 
data sets, a process-integrated measuring system was integrated into an existing milling 
machine of the Fraunhofer IPT. Various experiments have been carried out with the ma-
chine and the measurement system, which on the one hand represent processes that are 
running well, and on the other hand experiments in which parameters have been delib-
erately changed so that anomalies have occurred. These anomalies are divided into the 
following categories: 

1) Tool wear 
2) unbalance in tool holder 
3) Workpiece side chatter 
4) Low productivity detection 
5) Collision detection 

Categories 3, 4 and 5 can only be implicitly assigned to the datasets, all categories are 
assigned to use cases in the project "Glassist", these are described in detail in chapter 3, 
"Use cases". The respective datasets contain clustered sensor information, which is de-
terministically recorded and stored in a structured way in an hdf5 file. The sensor tech-
nology as well as the measurement system for data acquisition are described in chapter 
2. The data sets (description see chapter 4) contain a multitude of measured values, 
which were acquired from sensors integrated in the machine. For an algorithm that runs 
online to the process it makes sense to detect the respective anomaly with as few sensors 
as possible. Therefore, the focus should be on solutions that require as little sensor in-
formation as possible on the one hand, and on the other hand, care must be taken to 
ensure that the sensor is easy to integrate. For example, a signal splitter, which detects 
the actual positions of the axes at high frequency, has the advantage that it can be placed 
in the control cabinet of the machine with little effort, while a vibration sensor, for ex-
ample, which must be integrated directly into the clamping system, does not have this 
advantage. A disadvantage of the signal splitter compared to the vibration sensor, how-
ever, is that physical values are measured from a significantly greater distance to the 
process. In relation to the milling machine and the process, this means a significantly 
higher damping, which increases the demands on the measurement technology and the 
necessary algorithms for detecting anomalies.  
 
This document contains the chapters "Experimental Setup", "Use Cases", "Description 
of Data Sets" and "Hypotheses and Approaches". The chapter "Experimental Setup" 
describes the milling machine with the process-integrated sensors and the measurement 
system. The chapter "Use Cases" describes the use cases associated with the experi-
ments. In chapter "Description of data sets" the experiment series as well as the data 
sets are described in detail. The chapter "Hypotheses and Approaches" describes as-
sumptions and approaches on how the data sets can be processed. This chapter and the 
previous chapter are necessary for the interpretation of the data. 
 
 
The data is intended for companies working in the field of data science or in the machine 
tool industry, but also for scientists, students and those interested in integrating algo-
rithms into production.  
 



In the "Glassist" project, the consortium has integrated the measuring system developed 
at the Fraunhofer IPT on the software and hardware side, in addition to the solutions for 
data collection presented here in the document, with the following functions: 

- Interface to the machine control for recording machine data 
- Data aggregation 
- Live data processing 
- Data distribution to cloud systems or analytics applications 
- Modular change of the setup 

o Sensors 
o Sampling times (up to 100 kHz) 
o Machine information 

These functions are needed to process live data, with which the displayed anomalies are 
detected online using algorithms developed in the project. In order to further develop 
our system, we would be grateful for feedback or even for a cooperation in the frame-
work. We would be happy to provide you with additional information on request, if this 
is not included here. 



2  Test setup  

This chapter describes the test and measurement setup used in the project to generate 
the data sets, which is located at the Fraunhofer IPT. This essentially comprises the ma-
chine tool (or milling machine) (see Figure 1) and an integrated measuring system (see 
Figure 2, schematic representation) which also includes a process computer for data pro-
cessing.  
 
The machine tool (see Figure 1) is a milling machine with a 3-axis machining center from 
the manufacturer DMG Mori with the type designation HSC 55 linear. The machine in-
cludes a Heidenhain CNC control of the type iTNC530. This machine was extended by 
an integrated measuring system. To access the machine data, the DNC (Distributed Nu-
merical Control) component of the machine control must be enabled in the machine. 
The component can be used to read, write and process data from the machine controller 
via a manufacturer-specific API. The data is used in the project, but is not included in the 
data records, since the data records are focused on additional information from the pro-
cess-integrated sensors of the measuring system. 
 

 

Figure 1: Machine tool (experimental machine) at the Fraunhofer IPT 

The entire measurement setup, shown schematically in Figure 2, includes on the one 
hand the described machine tool and on the other hand the integrated measurement 
system. With the measuring system, sensor information is acquired at high frequency (up 
to 100 kHz) with a high resolution (64 bit). Table 1describes all available sensors including 
further metadata (designation, naming in data set, sampling rate, unit, mounting loca-
tion, hardware data acquisition etc.). 
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Figure 2: Schematic representation of the experimental setup  

Figure 2describes the components used in the measurement system together with the 
legend. The sensors are connected together with analog signal processing to two vBoxes 
(see Figure 3), which acquire the data synchronized and deterministically, via BNC con-
nectors. On the input side, the vBoxes require voltage signals (measurement signals) from 
-10 V to 10 V. The resulting data are forwarded via a real-time bus to the industrial 
computer, where software acquires and stores the data. The vBoxes (Figure 2, compo-
nents 14.1 and 14.2) digitize sensor data with configurable sampling times of up to 100 
kHz. An integrated hardware FFT also makes it possible to process high-frequency data, 
here e.g. data from acoustic emission (AE) sensors, at up to 5 MHz. Via a high-speed 
input (5 MHz), the vBox reads in the data, calculates FFT coefficients in a 1 ms cycle and 
makes the data available in the frequency domain register, which must be sampled at 
100 kHz. The 100 kHz data contains the individual coefficients. The following sensors 
are located in the machine: 

- Location: working area, clamping system of the machine 
o Triaxial (X,Y,Z) piezoelectric vibration sensor (Figure 2, component 5) 
o Acoustic Emission Sensor (Figure 2, Component 6) 

- Place: Workroom, spindle 
o Triaxial (X,Y,Z) piezoelectric vibration sensor (Figure 2, component 1) 
o Acoustic Emission Sensor (Figure 2, Component 2) 

- Place: Workroom  
o Piezoelectric microphone (Figure 2, component 4) 

- Location: control cabinet, between encoder and drive 
o 4x encoder signal splitter (Figure 2, component 9) 

In addition, the electrical power of the spindle is recorded using a measuring terminal 
(Figure 2, component 12). The following sensors are used here. 

- Location: Switch cabinet 
o 3x current measurement spindle currents by means of current trans-

former (Figure 2, component 10) 
o 3x voltage measurement (Figure 2, component 10) 



Figure 2, component 11 is an RJ45 connector of the machine control (Heidenhain 
iTNC530 control). Via Ethernet and protocol TCP/IP, machine data can be tapped here 
via a DNC component, which is not included in the data records for the reasons given 
above. 
 

 

Figure 3: vBox, Fraunhofer IPT, hardware for deterministic data generation 

 
Software on the industrial computer is used to configure the connected sensors accord-
ing to the values in Table 1. As soon as the measuring system is switched on and the 
configuration is completed, the measurement can be started by means of the software 
at the start of the test. The data sets are stored in the data format hdf5 on the industrial 
computer. The structuring of the data sets is described in chapter 4 
 

No. Designation Designation 

Data set 

Number 

of chan-

nels 

Sam-

pling 

rate 

Unit Mounting 

location 

Hardware 

data acquisi-

tion 

1 Triaxial (X,Y,Z) 

piezoelectric vi-

bration sensor 

Vib_T_X_50k 

Vib_T_Y_50k 

Vib_T_Z_50k 

3 50 kHz m/s^2 Working 

area, clamp-

ing system 

Analog input, 

vBox 

2 Acoustic Emis-

sion Sensor 

AE_T_FFT_500k 1 100 kHz 
1 

- Working 

area, clamp-

ing system 

High-Speed 

Analog Input, 

vBox 

3 Triaxial (X,Y,Z) 

piezoelectric vi-

bration sensor 

Vib_S_X_50k 

Vib_S_Y_50k 

Vib_S_Z_50k 

3 50 kHz m/s^2 Working 

space, spindle 

Analog input, 

vBox 

 

1  This data is the frequency spectrum, the sensor signal is read into the vBox at 5 MHz and there transformed into the frequency range with a 
frequency resolution of 5 kHz by means of FFT, which is executed at 1 kHz. The output data is written to a register which is sampled at 100 kHz 
by the measurement system. The register is divided into two areas, one containing the information on the respective coefficient and the other the 
information on the amplitude. With a sampling rate of 100 kHz, a total of 100 coefficients can be acquired per clock cycle for an FFT performed 
at 1 kHz, resulting in a total value range of 500 kHz at a resolution of 5 kHz. Higher coefficients (> 500 kHz) are written to additional registers, so 
measurements up to 2.5 MHz are possible with the vBox. This is for explanation only, the data sets are structured in suitable format for 
easy interpretation of the data. 



4 Acoustic Emis-

sion Sensor 

AE_S_FFT_500k 1 100 kHz 

1 

- Working 

space, spindle 

High-Speed 

Analog Input, 

vBox 

5 Piezoelectric mi-

crophone 

Micro_50k 1 50 kHz Pa Workroom Analog input, 

vBox 

6 4 x encoder sig-

nal splitters for 

X, Y, Z position 

and spindle po-

sition 

Enc_X_50k 

Enc_Y_50k 

Enc_Z_50k 

Enc_S_50k 

4 50 kHz mm Control cabi-

net 

Analog input, 

vBox 

7 Calculation of 

the electrical ac-

tive power by 

means of 3x 

current and 

voltage meas-

urement of the 

spindle 

Power_S_100 1 100 Hz W Control cabi-

net 

Power moni-

toring terminal 

Table 1: Sensor data description 

 



3  Use cases  

In the following, the above five use cases for anomaly detection are described. Chapter 
4 describes the data sets for these use cases. The chapter is intended to describe the goal 
of the necessary algorithm in order to generate added value compared to the state of 
the art. 

1) Application: Tool wear 

The tool shows signs of wear, which can be seen in different ways in the spectrum of 
the acoustic emission data or in other data during the milling process. Gradual wear will 
eventually lead to breakage or even before that to inferior component quality, which is 
associated with very high costs for complex components such as turbine blades. On the 
other hand, the service life of the individual tool differs from the manufacturer's specifi-
cation due to the different manufacturing condition or usage condition. With the help 
of machine learning, each tool can be used up to the relevant wear condition. 

2) Application: Unbalance in the tool holder 

The tool holder is not set up correctly or the spindle is defective, so the machine vibrates 
at the frequency of the excitation. The algorithm should detect this oscillation based on 
the process information. 

3) Application: Workpiece side chatter 

The machine excites the workpiece, which vibrates at an exceptionally high amplitude 
during machining. This leads to poor process conditions that can cause component fail-
ures or related machine overload. The unusual frequencies can be detected in the sensor 
data. If such oscillations are detected, the manufacturing process can be optimized by 
adjusting the process parameters. A visual representation of the machining point at 
which these vibrations occurred can be used on the one hand as an indication of where 
reworking of the workpiece may be necessary and at which point in the machining pro-
gram process parameters need to be adjusted. 

4) Use case: Low productivity detection 

The performance of the machine is not fully utilized, this manifests itself in relatively low 
forces and cutting performance. However, this condition is also set during finishing (work 
step for producing the highest accuracy). Based on the sensor data, the current produc-
tivity and utilization should be calculated to maximize productivity (indicators: air cuts 
during machining, finishing or roughing processes, spindle power, etc.). 

5) Use case: Collision detection 

The tool has been moved at too high a speed or too far into the workpiece so that the 
forces/vibrations increase too much. This causes damage to the tool and/or the machine. 
Damage that has occurred is to be shown here. 



4  Description of the records  

In this chapter, the use cases already described in the previous chapters are underpinned 
with data. The associated series of experiments with the corresponding data sets are 
described in detail. The focus here is on the "tool wear" use case, so the experiments 
and data for this are described first in the specific notes. The descriptions of the other 
use cases follow. Use case "Workpiece side chatter", "Low productivity detection" and 
"Collision detection" are based on the same data sets where a demo part is manufac-
tured. In the chapter "General notes", general notes on the data sets are first presented 

4.1 General information  

4.1.1 Description  

All the series of experiments described here are carried out using the experimental set-
up described in Chapter 2 Depending on the experiment, material is chipped or only an 
air cut is performed. The experiments are divided into the following three categories: 

- Tool_wear 
- Imbalance 
- Demo_Component 

The corresponding folders or subfolders contain files of the file type .hdf5. This data type 
is a hierarchical data type that is suitable for efficiently storing large amounts of data. 
The data sets of the experiment series "Tool_Wear" and "Imbalance" belong to the use 
case "Tool Wear", whereas the data sets of the series "Demo_Component" can be as-
signed to the use cases "Workpiece Side Chatter", "Low Productivity Detection" and 
"Collision Detection".  
 
The data structure of the .hdf5 files is largely the same, with additional label data being 
added only for the "Tool_wear" data sets; this is described in the specific notes. The data 
structure is described below. 

4.1.2 Data sets and data structure  

Figure 4shows an overview of the individual data sets in the "Explorer" view. The exper-
iment series are always displayed above and folders with the individual data sets for the 
sub-experiments are displayed below. These folders contain several .hdf5 files. For each 
sensor shown in Table 1one .hdf5 file is stored here. An .hdf5 is divided into several data 
sets, which are to be interpreted according to the naming and contain, for example, 
repeat measurements, which are specified in more detail in chapter specific notes. 
Among the individual .hdf5 files, the subordinate structure is always the same, so that 
the sensors can be compared with each other. The data sets contain the measured values 
of the sensors, they are on the one hand time series and on the other hand FFT spectra. 
The values here are already converted to the unit given in Table 1. In addition to the data 
given in Table 1the data sets also contain a time stamp and, for the FFT data, the fre-
quency axis in addition to the time stamp. The time series are to be assigned to the time 
stamp according to the following example: 
 

- Vib_S_Y_50k.h5  
o timestamp_50k.h5 



The decisive factor for this is always the last digits of the data set name, "50k" means 
that the data was recorded with a frequency of 50 kHz. The FFT data are assigned as 
follows: 
 

- AE_T_FFT_500k.h5  
o frequencies_AE_T_FFT_500k.h5 
o timestamp_AE_T_FFT_1k 

Note that "500k" now represents the frequency axis and 1k the time axis (cf. chapter 2, 
FFT are performed with a frequency of 1 kHz). All sensor data have been acquired syn-
chronously and can therefore be compared/correlated with each other on the time axis. 
 

 

Figure 4: Overview of the individual data sets 

 
The datasets can be processed by machine by including an hdf5 API. 

4.1.3 Demo component  

The demo component selected in the project is a thin-walled blade which is manufac-
tured in two processes. The two processes differ in the milling strategy and in the ma-
chining parameters. One process is a stable process and the other is an unstable process 
in which the thin-walled component is excited by the milling process. The result of the 
unstable process is chatter marks on the surface of the part. All components are milled 
from a solid aluminum block. Figure 5shows this component both as a milled part and 
in CAD view. In this case the unstable process was present during the milling process, 
therefore surface inhomogeneities - chatter marks - can be seen here in the upper region 
of the blade, which are not present in a stable process. The component is produced 
several times for the experiments, which is described more specifically in the following 
chapter. 
 



 

Figure 5 : Demo part (left: milled part, right: CAD) 

4.2 Specific notes for the individual use cases  

4.2.1 Tool wear - "Tool_Wear"  

The data sets of the experiment series "Tool_Wear" are divided into ten subfolders. Each 
of these subfolders contains data about the lifetime of a tool. The folder "Tool_5", for 
example, contains the label information "label_VB" and "label_tool_radius" in addition 
to the sensor data described in chapter 4.1. This information can be used to merge the 
sensor data with the current wear condition of the tool. "label_VB" was determined by 
microscopy of the tool and contains the average wear mark friction width of all cutting 
edges of the tool. "label_tool_radius" contains the measured tool radius over time. Both 
label information were measured at discrete points in time. They contain information 
about the respective current wear condition due to the direct measurement procedure. 
"label_tool_radius" is determined directly on the machine by measurement using a laser 
measurement system, but since the machine and the workpiece deform thermally, a 
thermal drift can be seen in this error. For the measurement of "label_VB" the tool has 
been taken out of the machine and measured on an external microscope. No thermal 
drift is present here.  
 
During the experiment, one plane was always machined from a solid steel block with 
varied process parameters and milling operations. The data of a plane are stored in each 
.hdf5 file and are to be interpreted according to the scheme shown in Figure 6 
 



T5L05Gr100_G
Werte: S , G ; Ist diese Kennzeichnung vorhanden 
wurden keine Bahnen in die Ebene, gefräst, sondern 
entweder eine G oder S Kontur. Diese Bearbeitungen 
entsprechen einer realen Bearbeitung.

Hiermit wird die aktuelle Anzahl an gefrästen Bahnen dargestellt, 
pro Bahn sind dies immer 20 Bahnen, im Datensatz ist Bahn 80 –     
enthalten. Dies gilt jedoch nur, wenn die Kennzeichnung   G  oder 
  S  nicht vorhanden ist. Ist Sie vorhanden, wird diese Zahl dennoch 
hochiteriert.

Mit dieser Kennzeichnung wird die aktuelle Ebene gekennzeichnet. 
 L5" bedeutet Ebene 5. Bei Ebene 0 liegt immer ein neuwertiges 
Werkzeug vor. 

Mit dieser Kennzeichnung wird das Werkzeug des Experiments 
gekennzeichnet.  T5  bedeutet hier Werkzeug 5.

 

Figure 6: Marking .hdf5 records "Tool_Wear". 

4.2.1.1 Description of the series of experiments for data generation 

The present data sets represent experiments on tool wear of different end mills. In each 
experiment, a new tool is used to mill specific contours until the respective tool is worn 
out. In total, the experiments were carried out for ten tools. The experiments carried out 
(process parameters, cutting process, tools) are described below. Process parameters and 
tool types have been varied for the machining operations of the tools. With the previous 
information on the application and the data sets, the focus here is on being able to assign 
the data to experiments and thus interpret them as a whole. 
 
Figure 7schematically shows the process of path milling. This is the reference process 
here to provoke tool wear. The workpiece is a steel block consisting of the material 
shown in the figure and the following dimensions: 

- H/W/L: 100 x 200 x 150 mm 

The individual levels and the individual parameters that characterize the process and the 
tool are shown (e.g. ae := intervention width). This is graphically illustrated and also used 
for data structuring in the .hdf5 data (cf. Figure 6).  
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Figure 7: Schematic representation of the "path milling" process 

Two different types of tools are used in the ten tools, these are specified in Table 2and 
Table 3 
 

Parameter Value 

Tool type 1 

Type ProSteel carbide roughing end mill (VHM) 

Diameter (d) 8 mm 

Cutting length (ls) 19 mm 

Length (l) 63 mm 

Number of teeth (nz) 3 

Max. contact with 1 x d at full grooves 
0.5 x d at trimming 

Table 2: Specification tool 1 (Tool type 1) 

 
 

Parameter Value 

Tool type 2 

Type ProSteel carbide roughing end mill (VHM) 

Diameter (d) 8 mm 

Cutting length (ls) 12 mm 

Length (l) 63 mm 

Number of teeth (nz) 4 

Max. contact with 1 x d at full grooves 
0.5 x d at trimming 

Table 3: Specification tool 2 (Tool type 2) 

Table 4shows the individual experiment series for each tool. The first column contains 
the tool number, which can be used to assign the tool to the .hdf5 data sets. The fol-
lowing columns contain information about the tool type, the process parameters for 
milling the grooves (cfFigure 7) and in the last column information about whether special 
contours were milled, e.g. G or S contour. The G-contour is shown as an example in 
Figure 8where the blue line shows the path of the milling cutter. From this it can be 
deduced that the machining is considerably more complex than simply milling paths. 
However, this milling path of the e.g. G-contour corresponds more to a "real manufac-
turing" and can therefore be used as a validation of the wear prediction. 
 



Nbr. 
tool 

Tool 
type 

Spindle 
Speed  
n 
[ 𝒓𝒑𝒎 ] 

Feed 
rate f 

[ 
𝒎𝒎

𝒎𝒊𝒏
  ] 

Cutting 
width  
ae 
[ 𝒎𝒎 ] 

Cutting 
depth  
ap 

[ 𝒎𝒎 ] 
 

Additional 
Information 

1 1 6760 1160 5 8 Milling of grooves only 
with specified parameters 

2 1 6760 1160 5 8 Milling of grooves only 
with specified parameters 

3 1 7440 1160 5 8 Milling of grooves only 
with specified parameters 

4 1 7440 1160 5 8 Milling of grooves only 
with specified parameters 

5 1 6760 980 5 8 Milling of grooves with 
specified parameters as 
well as milling of G-shape 
contours (representation 
of a realistic production 
process) on selected 
planes (they are marked 
in the .hdf5 datasets) 

6 1 7400 980 5 8 Milling of grooves with 
specified parameters as 
well as milling of G-shape 
contours (representation 
of a realistic production 
process) on selected 
planes (they are marked 
in the .hdf5 datasets) 

7 2 6800 1290 4 8 Milling of grooves with 
specified parameters as 
well as milling of S-shape 
contours (representation 
of a realistic production 
process) on selected 
planes (they are marked 
in the .hdf5 datasets) 

8 2 7900 1290 4 8 Milling of grooves with 
specified parameters as 
well as milling of G-shape 
contours (representation 
of a realistic production 
process), on selected 
planes (they are marked 
in the .hdf5 datasets) 

9 2 6800 1290 4 8 Milling of grooves with 
specified parameters as 
well as milling of G-shape 
contours (representation 
of a realistic production 
process), on selected 
planes (they are marked 
in the .hdf5 datasets) 

10 2 7900 1290 4 8 Milling of grooves with 
specified parameters as 
well as milling of G-shape 



contours (representation 
of a realistic production 
process) on selected 
planes (they are marked 
in the .hdf5 datasets) 

Table 4: Series of experiments 

 

 

Figure 8: Representation of the G-contour 

4.2.2 Unbalance in the tool holder - "Imbalance  

The data sets of the experiment series on "Imbalance" are divided into the two subfold-
ers "imbalance" and "no_imbalance". The data stored in the subfolders represent ex-
periments in which imbalance is present or not. 
 
During the experiments, the spindle was always rotated at one position and measured 
values were recorded. The .hdf5 data sets are divided into the position at which the 
measured values are recorded, resulting in the following three categories: 

- Z_axis_extended 
- Z_axis_not_extended 
- Z_axis_on_tool_change_position 

The individual data in the .hdf5 records are as described in the General Notes. 

4.2.2.1 Description of the data generation experiment 

In the following, the experiments on "unbalance" are presented. In the experiments on 
unbalance - stored in the subfolder "imbalance" - an unbalance of 21.8 gmm was arti-
ficially created with balancing rings mounted on the tool holder. This unbalance has been 
determined by means of a balancing machine. This tool holder was rotated at different 
positions (see Figure 9) with different speeds in the machine. The data for this are in-
cluded in the data sets. No machining was present during the experiments. 
 



 

Figure 9 : Unbalance measurement positions (left: Z-axis not extended (Z-Axis not extended), mid-
dle: Z-axis extended, right: Z-axis on tool change position). 

In order to identify a difference in the data sets, the same experiments were additionally 
performed with a tool holder without imbalance (< 1 gmm). These data are located in 
the subfolder "imbalance". Especially the data from the spindle side sensors are very 
interesting for the analysis here, but the unbalance is also recognizable in the other data. 

4.2.3 Workpiece side chatter, low productivity detection, collision de-
tection - "Demo_Component".  

The data sets of the experiment series for "Demo_Component" describe the production 
of a reference component. The following use cases are to be interpreted from the data:  

- Workpiece side chatter 
- Low productivity detection 
- Collision detection 

The data is divided into two subfolders "instable_process" and "stable_process". In one, 
the machining was performed according to a stable milling strategy and in the other with 
an unstable milling strategy.  
 
In the case of the .hdf5 data, there is always an air cut (without cutting (Air_Cut)) for 
each subfolder and then several data sets for individual workpieces in order to have re-
peatability in the measurements and to be able to identify changes when comparing the 
same manufacturing processes. For the data on the unstable milling strategy, the position 
of the workpiece was also varied. 
 
The individual data in the .hdf5 records are as described in the general notes. 
 
 

4.2.3.1 Description of the series of experiments for data generation 

The data for the experiments represent the repeated production of a thin-walled com-
ponent (see Figure 5) with two milling strategies. In the following, both milling strategies 
are briefly described. The exact machining path can be taken from the sensor data. The 
component represents a "blade". 
 
In the unstable process (unstable milling strategy), the process for manufacturing the 
aluminium component can be divided into three stages - "roughing", "pre-finishing" 
and "finishing". After the cuboid workpiece blank has been set up in the machine, the 



roughing process begins. First, rough machining is performed to bring the entire blank 
into a rough shape similar to the target geometry. In a further, finer machining step, 
further material is removed along the entire surface of the workpiece. At the end, the 
fine machining begins, material is again removed along the entire surface in a final step 
to achieve a surface with high quality. 
 
In the stable process (stable milling strategies), the workpiece is divided into several ma-
chining planes. On each plane, the three steps described above are performed - "rough-
ing", "pre-finishing" and "finishing". In each plane, material is first roughly removed, 
then finer material is removed, and in a final step a high surface quality is produced. This 
segments the machining process so that large, thin-walled, vibration-prone structures 
are avoided during the fine machining process (“finishing”). 
 
The unstable milling strategy is the established one, a component is always fine-ma-
chined - "finished" - in a final step. However, if you compare the two milling strategies 
with each other, you will see that with the unstable strategy, a particularly thin-walled 
component is machined, especially in the final finishing step - this is pliable and particu-
larly susceptible to vibrations, which lead to chatter marks on the surface and to the 
rejection of the workpiece. Due to the segmented machining in the stable milling strat-
egy, one has stable machining in each fine machining step, due to the fact that more 
residual material is available. These differences can also be seen in the data sets.  
 
The data records for the "Demo_Component" represent a real manufacturing process. 
From the information contained in the data sets, information can be extracted on the 
named use cases "detection of low productivity", "detection of collisions" and "work-
piece-side chatter". Hypotheses and approaches for this are described in chapter 5. The 
datasets should focus on the workpiece side chatter, as this correlates strongly with the 
quality of the part and poor quality leads to rejection of the part. These chatter marks 
occur more frequently with the unstable milling strategy, but not with the stable strategy. 
 



5  Hypotheses and approaches  

1) Application: Tool wear 

The data sets and their description contain information on the varied process parameters 
(cutting material, feed rate, spindle speed, etc.), tools (tool type, number of cutting 
edges, diameter, etc.) and raw sensor data. The raw sensor data are divided into two 
groups, those that are recorded continuously at process runtime and those where the 
condition of the tool is measured directly at discrete points in time. The direct measure-
ment of the condition allows to state concretely how the tool wear is at the respective 
time, but has the disadvantage that the cutting process has to be interrupted for the 
measurement of the tool. The continuously recorded sensor data are recorded in the 
process and contain information about the process (e.g. acoustics in the working area, 
vibrations, performance data, etc. ). Due to the process information in the continuously 
recorded data, it is difficult to extract conclusions about actual tool wear from the con-
tinuously recorded data. Together with the discretely recorded data (true value of the 
tool wear) and with appropriate data processing, these conclusions can be made so that 
the condition of the tool in the process can be modeled or approximated at any time. If 
this succeeds during the runtime of the machining process, it has the particular ad-
vantage that tools are only replaced in production when they are really worn. 
 
The information about the correct value of the tool wear from the direct discrete meas-
urement of the tool can be used as a label for the sensor data. Among the sensor data, 
the AE data, the vibration data (force differences in the process) and the current data 
(correlate with cutting force) are of particular interest. Literature shows that these data 
sources contain information about wear. During model development, various features 
are to be extracted from the raw data, which contain information about the condition 
of the tool. A feature selection method can be used to select meaningful features. Re-
gression models can be used to determine the relationship between the selected feature 
data and the label information. After modeling and validation, however, the question 
remains whether the model can be used with different processes and/or tools and 
whether it approximates the target value correctly. For this purpose, the data sets can be 
used, since they contain experiments with different tool types and different machining 
contours (e.g. G-shape, S-shape, milling path), especially the G-shape and S-shape rep-
resent real manufacturing conditions. However, it remains open whether the model can 
also be generalized; in order to validate this, deployment and inference under real man-
ufacturing conditions is necessary in a further step.  

2) Application: Unbalance in the tool holder 

Relevant data sources here are the sensors installed on the spindle side, as well as the 
performance data of the spindle, the spindle position in the workspace and the encoder 
data of the spindle. Machine learning or analytics can be used to make a prediction about 
the spectra of the input data. An increased vibration amplitude at resonance frequency 
can be detected.  

3) Application: Workpiece side chatter 

The detection of the vibrations of the component, which lead to chattering, in the data 
of the vibration signal at the clamping system is simple. However, this sensor is difficult 
to accommodate in production because it is located in the working area of the machine, 
close to the workpiece. One question here is whether this information is also available in 
other sensors. One approach would be to use the vibration sensor on the clamping sys-
tem to generate a label for the chatter and to extract this information from another 
("cheaper") sensor. 



 

 

Figure 10: Visualization of inhomogeneities on the workpiece surface 

In the case of chatter on the workpiece side, the data sets from the unstable milling 
strategy can be compared with the data sets from the stable milling strategy. In the stable 
strategy, there is hardly any chatter in the fine machining process, and in the unstable 
strategy, the chatter is predominant, especially in the upper areas of the workpiece. Fig-
ure 10shows the encoder data of the machine in X,Y and Z, correlated with other sensor 
data. The sensor data is used to calculate machining inhomogeneities in the process 
(shown in red), and these are shown in context to the machining position. Poor surface 
quality is to be expected at these positions. 

4) Use case: Low productivity detection 

There are many criteria for low productivity. The data from the component production 
shown can be used to make a statement about when there is material contact between 
the tool and the workpiece and when there is not. Furthermore, during a machining 
operation, the output can be monitored; if it is sufficiently high and there is no fine 
machining, the productivity is also high. 

5) Use case: Collision detection 

Data on a collision are not available in the data sets, as a collision would lead to damage. 
However, due to the large number of repeat measurements, a large database is available. 
With this, an algorithm can be trained using unsupervised learning, which recognizes a 
collision as an anomaly.  
 


