Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ziegler, Matthias | - |
dc.date.accessioned | 2022-07-06T08:29:29Z | - |
dc.date.available | 2022-07-06T08:29:29Z | - |
dc.date.issued | 2022-06-03 | - |
dc.identifier.uri | https://fordatis.fraunhofer.de/handle/fordatis/273 | - |
dc.identifier.uri | http://dx.doi.org/10.24406/fordatis/202 | - |
dc.description | This dataset is composed from three different scenes with a varying number of takes per scene. The images have been generated using CARLA, a framework for autonomeous driving. In the dataset, an autonomeous car is exploring an urban area under different lighting and weather conditions. In each take, the car is equipped with three front-facing cameras capturing the scenery. Besides pure RGB image data, the dataset features ground-truth depth information encoded as described here: https://carla.readthedocs.io/en/latest/ref_sensors/#depth-camera The camera parameters and capture setup is as follows: Field of view: 110° Resolution: 1920 x 1080 Number of takes: Scene 1: 41 Scene 2: 23 Scene 3: 20 Camera baseline Scene 1: 0.280833m (2.17m/12) Scene 2 and 3: 0.1m | - |
dc.description.abstract | This dataset is composed from three different scenes with a varying number of takes per scene. The images have been generated using CARLA, a framework for autonomeous driving. In the dataset, an autonomeous car is exploring an urban area under different lighting and weather conditions. In each take, the car is equipped with three front-facing cameras capturing the scenery. Besides pure RGB image data, the dataset features ground-truth depth information encoded as described here: https://carla.readthedocs.io/en/latest/ref_sensors/#depth-camera The camera parameters and capture setup is as follows: Field of view: 110° Resolution: 1920 x 1080 Number of takes: Scene 1: 41 Scene 2: 23 Scene 3: 20 Camera baseline Scene 1: 0.280833m (2.17m/12) Scene 2 and 3: 0.1m | en |
dc.language.iso | en | en |
dc.publisher | Coffee Bean State University | - |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.subject | multi-camera | en |
dc.subject | deep-learning | en |
dc.subject | depth-reconstruction | en |
dc.subject.ddc | DDC::000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik | en |
dc.subject.ddc | DDC::600 Technik, Medizin, angewandte Wissenschaften::600 Technik::600 Technik, Technologie | en |
dc.title | Dataset for multi-camera depth reconstruction | en |
dc.type | Image | en |
dc.contributor.funder | Bundesministerium für Bildung und Forschung BMBF (Deutschland) | en |
fordatis.group | IUK-Technologie | en |
fordatis.institute | IIS Fraunhofer-Institut für Integrierte Schaltungen | en |
fordatis.rawdata | false | en |
fordatis.sponsorship.projectid | 01IS1907A | en |
fordatis.sponsorship.projectname | KI-Labor Systemdesign für Maschinelles Lernen in Anwendungen der Signalverarbeitung | en |
fordatis.sponsorship.projectacronym | KISS | en |
dc.date.updated | 2022-06-03T08:20:19Z | - |
fordatis.date.start | 2020-11-01 | - |
fordatis.date.end | 2020-11-30 | - |
Appears in Collections: | Fraunhofer-Institut für Integrierte Schaltungen IIS |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Scene_1.tar | 177,79 GB | TAR | Download/Open | |
Scene_2.tar | 203,65 GB | TAR | Download/Open | |
Scene_3.tar | 172,87 GB | TAR | Download/Open | |
Scene_3.tar | 172,87 GB | TAR | Download/Open |
This item is licensed under a Creative Commons License