Full metadata record
DC FieldValueLanguage
dc.contributor.advisorRauhut, Markus-
dc.contributor.authorHatic, Damjan-
dc.contributor.otherCodastefano, Marco-
dc.contributor.otherStompanato, Francesco-
dc.contributor.otherBeleza, Antonio-
dc.contributor.otherRosa, Sophia-
dc.date.accessioned2023-10-25T09:28:11Z-
dc.date.available2023-10-25T09:28:11Z-
dc.date.issued2023-10-
dc.identifier.urihttps://fordatis.fraunhofer.de/handle/fordatis/354-
dc.identifier.urihttp://dx.doi.org/10.24406/fordatis/296-
dc.description.abstractNatural disasters have devastating effects on communities, necessitating swift and accurate damage assessment. Manual assessment methods are time-consuming and costly, emphasizing the significance of semiautomatic ap- proaches employing remote sensing and drone data. However, current datasets primarily focus on Western countries’ infrastructure, lacking information on damaged buildings in other regions specifically Africa. To bridge this gap, we present the EDDA dataset, comprising of VHR orthorectified mosaic images from drone imagery with building footprint labels classified by damage extent of rural and urban areas of Mozambique affected by Cyclone Ida.en
dc.language.isoenen
dc.relation.isreferencedby10.1117/12.2683882-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/en
dc.titleEDDA - Mozambique post disaster building damage dataseten
dc.typeImageen
dc.contributor.funderFraunhofer-Gesellschaft FhGen
dc.description.technicalinformationConsists of two subsets arhived as rar files to reduce download size. Each subset consists of a combination of tiff images and shapefile labels. The tiff contain ortorectificed VHR orthomosaics images stored in ZSTD compression to dramatically reduce image size. This compression requires the use of designated GIS software (ArcGIS, QGIS, etc..) or libraries built on GDAL (python libraries GDAL, Arcpy, Rasterio, etc..). The label part of each subset are arhived as shapefiles and can be opened using designated GIS software (ArcGIS, QGIS, etc..) or libraries (python libraries Arcpy, Geopandas, PyProj).en
fordatis.bibliographicCitation.doihttps://doi.org/10.1117/12.2683882en
fordatis.bibliographicCitation.issueEarth Resources and Environmental Remote Sensing/GIS Applications XIV (SPIE Remote Sensing, 2023, Amsterdam, Netherlands)en
fordatis.bibliographicCitation.issued2023-10-19-
fordatis.bibliographicCitation.journaltitleSPIE Proceedingsen
fordatis.bibliographicCitation.originalpublishernameSPIEen
fordatis.bibliographicCitation.volume12734en
fordatis.instituteITWM Fraunhofer-Institut für Techno- und Wirtschaftsmathematiken
fordatis.rawdatatrueen
fordatis.sponsorship.projectnameEDDAen
fordatis.date.start2019-03-
fordatis.date.end2023-10-
Appears in Collections:Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

Files in This Item:
File Description SizeFormat 
EDDA_Rural.rarRural subset of the EDDA dataset22,12 GBTIFFDownload/Open
EDDA_Urban.rarUrban subset of the EDDA dataset49,23 GBTIFFDownload/Open
dataset_extent.pngVisual indicator of the dataset extent1,07 MBimage/pngDownload/Open


This item is licensed under a Creative Commons License Creative Commons