Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Krüger, Jörg | - |
dc.contributor.author | Koch, Paul | - |
dc.contributor.author | Schlüter, Marian | - |
dc.contributor.author | Briese, Clemens | - |
dc.contributor.author | Chavan, Vivek | - |
dc.contributor.other | Jagtap, Maulik | - |
dc.date.accessioned | 2023-11-13T09:59:50Z | - |
dc.date.available | 2023-11-13T09:59:50Z | - |
dc.date.issued | 2023-11-02 | - |
dc.identifier.uri | https://fordatis.fraunhofer.de/handle/fordatis/358 | - |
dc.identifier.uri | http://dx.doi.org/10.24406/fordatis/300 | - |
dc.description.abstract | We present MVIP, a novel dataset for multi-modal and multi-view application oriented industrial part recognition. Here we combine a calibrated RGBD multi-view dataset with additional object context such as physical properties, natural language, and super-classes. Our main goal with MVIP is to study and push transferability of various state-of-the-art methods within related downstream tasks towards an efficient deployment of industrial classifiers. Additionally, we intent to push with MVIP research regarding several modality fusion topics, (automated) synthetic data generation, and complex data sampling methods -- combined in a single application oriented benchmark. | en |
dc.language.iso | en | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Multi Modal | en |
dc.subject | Multi View | en |
dc.subject | Classification | en |
dc.subject | Machine Learning | en |
dc.subject | RGB-D | en |
dc.subject | Part Recognition | en |
dc.subject | Industrial | en |
dc.subject | Industry | en |
dc.title | MVIP: A Dataset for Industrial Part Recognition | en |
dc.type | Image | en |
dc.contributor.funder | Bundesministerium für Bildung und Forschung BMBF (Deutschland) | en |
fordatis.group | Produktion | en |
fordatis.institute | IPK Institut für Produktionsanlagen und Konstruktionstechnik | en |
fordatis.rawdata | false | en |
fordatis.sponsorship.FundingProgramme | ReziProK | en |
fordatis.sponsorship.projectid | 033R226 | en |
fordatis.sponsorship.projectname | Sensorische Erfassung, automatisierte Identifikation und Bewertung von Altteilen | en |
fordatis.sponsorship.projectacronym | EIBA | en |
fordatis.sponsorship.ResearchFrameworkProgramm | FONA | en |
Appears in Collections: | Institut für Produktionsanlagen und Konstruktionstechnik IPK |
Files in This Item:
This item is licensed under a Creative Commons License