Notice This is not the latest version of this item. The latest version can be found at: https://fordatis.fraunhofer.de/handle/fordatis/371.2
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGeng, Alexander-
dc.date.accessioned2023-12-06T13:22:19Z-
dc.date.available2023-12-06T13:22:19Z-
dc.date.issued2023-07-31-
dc.identifier.urihttps://fordatis.fraunhofer.de/handle/fordatis/371-
dc.identifier.urihttp://dx.doi.org/10.24406/fordatis/313-
dc.description.abstractThis source code is meant to support the understanding of our paper Hybrid quantum transfer learning for crack image classification on NISQ hardware. Quantum computers possess the potential to process data using a remarkably reduced number of qubits compared to conventional bits, as per theoretical foundations. However, recent experiments have indicated that the practical feasibility of retrieving an image from its quantum encoded version is currently limited to very small image sizes. Despite this constraint, variational quantum machine learning algorithms can still be employed in the current noisy intermediate scale quantum (NISQ) era. An example is a hybrid quantum machine learning approach for edge detection. In our study, we present an application of quantum transfer learning for detecting cracks in gray value images. We compare the performance and training time of PennyLane’s standard qubits with IBM’s qasm_simulator and real backends, offering insights into their execution efficiency.en
dc.description.sponsorshipThis work was supported by the project AnQuC-3 of the Competence Center Quantum Computing Rhineland-Palatinate (Germany) and by the German Federal Ministry of Education and Research (BMBF) under grant 05M2020 (DAnoBi). Additionally, this work was funded by the Federal Ministry for Economic Affairs and Climate Action (German: Bundesministerium für Wirtschaft und Klimaschutz) under the project EniQmA with funding number 01MQ22007A.en
dc.language.isoenen
dc.relation.ispartofA hybrid quantum image edge detector for the NISQ era: https://arxiv.org/pdf/2307.16723.pdf-
dc.relation.ispartofhttps://publica.fraunhofer.de/entities/publication/3a4e810a-0403-45a7-9eb6-6b08016c9b63/details-
dc.relation.ispartof10.1007/s42484-022-00071-3-
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/en
dc.subjecthybrid quantum transfer learningen
dc.subjectimage classificationen
dc.subjectIBM quantum experienceen
dc.subjectquantum image processingen
dc.subject.ddcDDC::500 Naturwissenschaften und Mathematiken
dc.titleHybrid quantum transfer learning for crack image classification on NISQ hardwareen
dc.typeSource Codeen
dc.contributor.funderBundesministerium für Bildung und Forschung BMBF (Deutschland)en
dc.description.technicalinformationMainly used python, together with qiskit, pennylane and torch. Specific versions of the packages are written in the jupyter notebook or in the requirements.txt or environment.yml. See there for more informationen
fordatis.instituteITWM Fraunhofer-Institut für Techno- und Wirtschaftsmathematiken
fordatis.rawdatafalseen
fordatis.sponsorship.projectnameAnwendungsorientiertes Quantencomputingen
fordatis.sponsorship.projectacronymAnQuC-3en
fordatis.date.start2023-11-25-
fordatis.date.end2023-12-05-
Appears in Collections:Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

Files in This Item:
File Description SizeFormat 
requirements.txtRequirements for pip install15,04 kBTextDownload/Open
environment.ymlconda environment13,99 kBUnknownDownload/Open
crack_classification.ipynbjupyter notebook with source code1,43 MBUnknownDownload/Open
subset_12img.zipSubset of the data used for the paper3,08 MBZIPDownload/Open
scheme.pngimage of the used method517,41 kBimage/pngDownload/Open

Version History
Version Item Date Summary
2 fordatis/371.2 2023-12-06 14:45:44.567 Refer to the wrong link in the reference section
1 fordatis/371 2023-12-06 14:22:19.0

This item is licensed under a Creative Commons License Creative Commons