Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Gruna, Robin | - |
dc.contributor.advisor | Heizmann, Michael | - |
dc.contributor.advisor | Friederich, Fabian | - |
dc.contributor.author | Roming, Lukas | - |
dc.contributor.author | Aderhold, Jochen | - |
dc.contributor.author | Čibiraitė-Lukenskienė, Dovilė | - |
dc.contributor.author | Bihler, Manuel | - |
dc.contributor.author | Schlüter, Friedrich | - |
dc.contributor.other | Gundacker, Dominik | - |
dc.date.accessioned | 2024-03-25T15:35:48Z | - |
dc.date.available | 2024-03-25T15:35:48Z | - |
dc.date.issued | 2023-05 | - |
dc.identifier.uri | https://fordatis.fraunhofer.de/handle/fordatis/375 | - |
dc.identifier.uri | http://dx.doi.org/10.24406/fordatis/318 | - |
dc.description.abstract | The dataset contains 44 hyperspectral near-infrared images of bulky waste samples. For each hyperspectral image, there is also an RGB and a label image assigning one of 9 classes to each pixel. The majority of samples are crushed furniture from IKEA and the other objects are from a real waste plant or self-collected bulky waste. Details of the file structure are given in "readme.txt" of the provided dataset. The measurements are part of the work described in https://publica.fraunhofer.de/entities/publication/dde5f89c-f87b-4644-b084-f4edf66c4b19/details | en |
dc.description.sponsorship | Das Projekt wird von dem Bundesministerium für Ernährung und Landwirtschaft (BMEL) gefördert. Projektträger ist die Fachagentur Nachwachsende Rohstoffe e.V. mit der funding reference 2220HV048A. | en |
dc.language.iso | en | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | hyperspectral imaging | en |
dc.subject | bulky waste | en |
dc.subject | machine learning | en |
dc.subject | RGB imaging | en |
dc.subject.ddc | DDC::500 Naturwissenschaften und Mathematik::530 Physik::535 Licht, Infrarot- und Ultraviolettphänomene | en |
dc.title | Hyperspectral Near-infrared Dataset of Bulky Waste | en |
dc.title.alternative | Including class labels and registered RGB images | en |
dc.type | Image | en |
dc.contributor.funder | Bundesministerium für Ernährung und Landwirtschaft BMEL (Deutschland) | en |
dc.description.technicalinformation | Three tiff-files files per sample collection are given in this dataset, with 44 bulky waste sample collections in total. One RGB image (3300x4782 pixel), one hyperspectral image (550x797 pixel with 210 channels) and one gray-scale image (3300x4782 pixel) encoding a class in each pixel (class index = gray scale value / 12). For hyperspectral imaging, the camera FX17e from SPECIM was chosen. The camera collects hyperspectral images with 224 bands ranging from 900nm to 1700 nm. 14 channels at the edge of the spectrum have been removed in the provided images, due to a low sensitivity. The frame rate was set to 104.17 Hz, resulting in a resolution of 1mm/pixel in both axes of the image. A prism-based RGB line scan camera (SW-4000T-10GE) was used to make recordings of the sample scenario. These images were utilized for labelling and conventional RGB image analysis. The frame rate of the RGB camera was set to 625 Hz. The spatial resolution was 0.15mm/pixel. As a light source, halogen lamps were used for both cameras. By moving the samples on a conveyor belt with a speed of 0.108 m/s, images with two spatial axes were constructed using the push-broom method. The scanning lines of the hyperspectral and the RGB camera differ by a few centimeters, which was corrected using a marker-based registration. Each pixel in a hyperspectral image corresponds to a 6x6 pixel region in the RGB and the label image. To have a one-to-one pixel correspondence for all images, one can downsample the RGB and label images by a factor of 6. | en |
dc.relation.references | 10.24406/publica-1182 | - |
dc.title.translated | Hyperspektraler nahinfrarot Datensatz von Sperrmüll | en |
dc.title.translated | Inklusive Klassenlabels und registrierte RGB-Bilder | en |
fordatis.group | Light & Surfaces | en |
fordatis.institute | IOSB Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung | en |
fordatis.institute | WKI Fraunhofer-Institut für Holzforschung Wilhelm-Klauditz-Institut | en |
fordatis.institute | ITWM Fraunhofer-Institut für Techno- und Wirtschaftsmathematik | en |
fordatis.project.fhgid | 10-07046-2140-00002 | en |
fordatis.rawdata | false | en |
fordatis.sponsorship.projectid | 2220HV048A | en |
fordatis.sponsorship.projectname | Altholzgewinnung aus Sperrmüll durch Künstliche Intelligenz und Bildverarbeitung im VIS-, IR- und Terahertz-Bereich | en |
fordatis.sponsorship.projectacronym | ASKIVIT | en |
fordatis.date.start | 2022-11-23 | - |
fordatis.date.end | 2022-11-25 | - |
Appears in Collections: | Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
HSI_Bulky_Waste_Dataset.zip | zip-file including all images and a readme.txt for further details | 9,26 GB | ZIP | Download/Open |
This item is licensed under a Creative Commons License