Langanzeige der Metadaten
DC Element | Wert | Sprache |
---|---|---|
dc.contributor.author | Mey, Oliver | - |
dc.contributor.author | Schneider, André | - |
dc.contributor.author | Enge-Rosenblatt, Olaf | - |
dc.contributor.author | Yesnier, Bravo | - |
dc.contributor.author | Stenzel, Pit | - |
dc.date.accessioned | 2021-08-06T11:42:36Z | - |
dc.date.available | 2021-08-06T11:42:36Z | - |
dc.date.issued | 2021 | - |
dc.identifier.uri | https://fordatis.fraunhofer.de/handle/fordatis/215 | - |
dc.identifier.uri | http://dx.doi.org/10.24406/fordatis/142 | - |
dc.description.abstract | Predictions of energy consumption are crucial for energy retailers to minimize deviations from energy acquired in the day-ahead market and the actual consumption of their customers. The increasing spread of smartmeters means that retailers have access to hourly consumption values of all their contracted customers in realtime. Using machine learning algorithms, these hourly values can be used to calculate predictions for the future energy consumption of the customers. The present data set allows the training and validation of AI-based prediction models. | en |
dc.language.iso | en | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | energy consumption | en |
dc.subject | hourly consumption | en |
dc.subject | different customer profiles | en |
dc.subject | private households | en |
dc.subject.ddc | DDC::600 Technik, Medizin, angewandte Wissenschaften | en |
dc.title | Energy Consumption Curves of 499 Customers from Spain | en |
dc.type | Tabular Data | en |
dc.contributor.funder | Bundesministerium für Verkehr und digitale Infrastruktur BMVI (Deutschland) | en |
dc.description.technicalinformation | The dataset contains the measured energy consumption of 499 customers in Spain. The file 20201015_consumption.xlsx contains time series with an hourly resolution for each of the customers. The energy consumption is measured in kWh. In addition to energy consumption weather data is available. The file 20201015_weather.xlsx contains the outside temperature for the region of each customer as time series with an hourly resolution. The file 20201015_profiles.xlsx contains the meta data for the 499 customers. Each customer is assigned to one of the 68 customer profiles (such as private households, shops, bakeries). | en |
dc.title.translated | Energieverbrauchskurven von 499 Kunden aus Spanien | de |
fordatis.group | Energietechnologien und Klimaschutz | en |
fordatis.institute | IIS Fraunhofer-Institut für Integrierte Schaltungen - Institutsteil Entwicklung Adaptiver Systeme EAS | en |
fordatis.project.fhgid | 290157 | en |
fordatis.rawdata | true | en |
fordatis.sponsorship.FundingProgramme | Eurostars-2 Horizon 2020 | en |
fordatis.sponsorship.projectid | E!113348 | en |
fordatis.sponsorship.projectname | Energy Saving by Blockchain | en |
fordatis.sponsorship.projectacronym | ESB | en |
fordatis.sponsorship.ResearchFrameworkProgramm | Eurostars Horizon 2020 | en |
fordatis.date.start | 2019-01-01 | - |
fordatis.date.end | 2019-12-30 | - |
Enthalten in den Sammlungen: | IIS Fraunhofer-Institut für Integrierte Schaltungen - Institutsteil Entwicklung Adaptiver Systeme EAS |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
20201015_consumption.xlsx | energy consumption curves of the 499 customers (time series, hourly resolution) | 21,06 MB | Microsoft Excel XML | Öffnen/Download |
20201015_profiles.xlsx | profiles of the 499 customers | 19,21 kB | Microsoft Excel XML | Öffnen/Download |
20201015_weather.xlsx | weather data (outside temperature) of the customer's regions (time series, hourly resolution) | 18 MB | Microsoft Excel XML | Öffnen/Download |
Versionshistorie
Version | Ressource | Datum | Zusammenfassung |
---|---|---|---|
1 | fordatis/215 | 2021-08-06 13:42:36.0 |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons