Langanzeige der Metadaten
| DC Element | Wert | Sprache | 
|---|---|---|
| dc.contributor.author | Morand, Lukas | - | 
| dc.contributor.author | Iraki, Tarek | - | 
| dc.contributor.author | Dornheim, Johannes | - | 
| dc.contributor.author | Link, Norbert | - | 
| dc.contributor.author | Helm, Dirk | - | 
| dc.date.accessioned | 2021-11-10T13:24:22Z | - | 
| dc.date.available | 2021-11-10T13:24:22Z | - | 
| dc.date.issued | 2021 | - | 
| dc.identifier.uri | https://fordatis.fraunhofer.de/handle/fordatis/219 | - | 
| dc.identifier.uri | http://dx.doi.org/10.24406/fordatis/146 | - | 
| dc.description.abstract | This publication contains three exemplary data sets generated via active learning and numerical simulations. The active learning approach used is query-by-committee. For comparison, data is also generated using classical sampling approachs. The first data set originates from a toy example that is based on an appoximated Dirac delta function, for which data was generated randomly and via query-by-committee. The second example is part of a parameter identification problem in materials modeling, for which data was generated via Latin Hypercube design, a knowledge-based approach and query-by-committee. The third example is about generating artificial bcc rolling textures, for which data was generated via Latin Hypercube design, query-by-committee and an extended query-by-committee approach that prevents sampling in regions out of scope. | en | 
| dc.language.iso | en | en | 
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en | 
| dc.subject.ddc | DDC::500 Naturwissenschaften und Mathematik::530 Physik::531 Klassische Mechanik, Festkörpermechanik | en | 
| dc.subject.ddc | DDC::600 Technik, Medizin, angewandte Wissenschaften::670 Industrielle Fertigung::671 Metallverarbeitung und Rohprodukte aus Metall | en | 
| dc.title | Sets of exemplary microstructure-property data generated via active learning and numerical simulations | en | 
| dc.type | Tabular Data | en | 
| dc.contributor.funder | Deutsche Forschungsgemeinschaft DFG | en | 
| dc.relation.issupplementto | http://publica.fraunhofer.de/dokumente/N-648561.html | - | 
| dc.relation.issupplementto | https://doi.org/10.3389/fmats.2021.824441 | - | 
| fordatis.group | Mikroelektronik | en | 
| fordatis.institute | IWM Fraunhofer-Institut für Werkstoffmechanik | en | 
| fordatis.rawdata | true | en | 
| fordatis.sponsorship.projectid | 415804944 | en | 
| fordatis.sponsorship.projectname | Maßgeschneiderte Werkstoffeigenschaften durch Mikrostrukturoptimierung: Maschinelle Lernverfahren zur Modellierung und Inversion von Struktur-Eigenschafts-Beziehungen und deren Anwendung auf Blechwerkstoffe | en | 
| Enthalten in den Sammlungen: | Fraunhofer-Institut für Werkstoffmechanik IWM | |
Dateien zu dieser Ressource:
| Datei | Beschreibung | Größe | Format | |
|---|---|---|---|---|
| 1_dirac_qbc_X.txt | 26,16 kB | Text | Öffnen/Download | |
| 1_dirac_qbc_y.txt | 25,67 kB | Text | Öffnen/Download | |
| 1_dirac_random_X.txt | 24,89 kB | Text | Öffnen/Download | |
| 1_dirac_random_y.txt | 24,44 kB | Text | Öffnen/Download | |
| 2_paramident_kbs_curves.txt | 1,22 MB | Text | Öffnen/Download | |
| 2_paramident_kbs_params.txt | 122,07 kB | Text | Öffnen/Download | |
| 2_paramident_lhd_curves.txt | 1,22 MB | Text | Öffnen/Download | |
| 2_paramident_lhd_params.txt | 122,07 kB | Text | Öffnen/Download | |
| 2_paramident_qbc_curves.txt | 1,27 MB | Text | Öffnen/Download | |
| 2_paramident_qbc_params.txt | 126,95 kB | Text | Öffnen/Download | |
| 3_rolling_lhs_params.txt | 2,33 MB | Text | Öffnen/Download | |
| 3_rolling_lhs_props.txt | 732,42 kB | Text | Öffnen/Download | |
| 3_rolling_qbc_params.txt | 2,33 MB | Text | Öffnen/Download | |
| 3_rolling_qbc_props.txt | 732,42 kB | Text | Öffnen/Download | |
| 3_rolling_qbc_Rle5_params.txt | 2,33 MB | Text | Öffnen/Download | |
| 3_rolling_qbc_Rle5_props.txt | 732,42 kB | Text | Öffnen/Download | |
| README.txt | Contains general information about the data | 2,77 kB | Text | Öffnen/Download | 
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons