Hinweis Dies ist nicht die aktuellste Version der Ressource. Diese kann hier gefunden werden: https://fordatis.fraunhofer.de/handle/fordatis/287.2
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorWicht, Jakob-
dc.date.accessioned2022-10-26T06:51:20Z-
dc.date.available2022-10-26T06:51:20Z-
dc.date.issued2022-10-
dc.identifier.urihttps://fordatis.fraunhofer.de/handle/fordatis/287-
dc.identifier.urihttp://dx.doi.org/10.24406/fordatis/216-
dc.description.abstractAutomated spectrum analysis serves as a troubleshooting tool that helps to diagnose faults in wireless networks like difficult signal propagation conditions as well as coexisting wireless networks. It provides a higher monitoring coverage while requiring less expertise compared to manual spectrum analysis. In this publication, we introduce a data set that can be used to train and evaluate a deep learning model, capable to detect frames of different wireless standards as well as interference between single frames. Since manually labelling a high variety of frames in different environments is too challenging, an artificial data generation pipeline has been developed. The data set consists of 20000 augmented signal segments, each containing a random number of different Wi-Fi and Bluetooth frames, their spectral image representations and labels that describe the position and type of frame within the spectrogram. The dataset contains results of intermediate processing steps that enables the research or teaching community to create new datasets for specific requirements or to provide new interesting examination examples.en
dc.description.sponsorshipThis work was funded by the Federal Ministry of Education and Research of the Federal Republic of Germany (BMBF) within the PENTA project “SunRISE” (https://www.project-sunrise.eu/) under the Project Number 16ES0974 and in cooperation with the Center for Analytics – Data – Applications (ADA-Center) which is supported by the Bavarian Ministry of Economic Affairs, Regional Development and Energy within the framework of “BAYERN DIGITAL II” (20-3410-2-9-8).en
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subjectspectrogram data seten
dc.subjectwireless network monitoringen
dc.subjectspectrum analysisen
dc.subjectframe detectionen
dc.subjectobject detectionen
dc.subjectdeep learningen
dc.titleSpectrogram Data Set for Deep Learning Based RF-Frame Detectionen
dc.typeImageen
dc.contributor.funderBundesministerium für Bildung und Forschung BMBF (Deutschland)en
dc.description.technicalinformationSee correspondig publication "Spectrogram Data Set for Deep Learning Based RF-Frame, Jakob Wicht, Ulf Wetzker and Dr. Vineeta Jain". Additional helper scripts are provided at https://gitlab.cc-asp.fraunhofer.de/ifk_public/sunrise/public-mdpi-dataset-helper-scripts/-/tree/dataset_20220711en
dc.relation.issupplementedbyhttps://gitlab.cc-asp.fraunhofer.de/ifk_public/sunrise/public-mdpi-dataset-helper-scripts/-/tree/dataset_20220711-
dc.relation.referenceshttps://ieeexplore.ieee.org/document/9657084-
fordatis.instituteIIS Fraunhofer-Institut für Integrierte Schaltungen - Institutsteil Entwicklung Adaptiver Systeme EASen
fordatis.project.fhgid10-09446-2740-00001en
fordatis.rawdatafalseen
fordatis.sponsorship.projectid16ES0974en
fordatis.sponsorship.projectnameSunRISEen
fordatis.sponsorship.ResearchFrameworkProgrammPentaen
fordatis.date.start2022-07-11-
fordatis.date.end2022-07-11-
Enthalten in den Sammlungen:IIS Fraunhofer-Institut für Integrierte Schaltungen - Institutsteil Entwicklung Adaptiver Systeme EAS

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
spectrogram_training_data_20220711.zip80,73 GBZIPÖffnen/Download

Versionshistorie
Version Ressource Datum Zusammenfassung
2 fordatis/287.2 2022-11-23 15:15:11.01 The data set has been regenerated with two changes. The channel model applied when generating the spectrogram has been improved in terms of variety. Additionally, the number of long CCK and OFDM modulated Wi-Fi frames have been increased.
1 fordatis/287 2022-10-26 08:51:20.0

Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons