Hinweis
Dies ist nicht die aktuellste Version der Ressource. Diese kann hier gefunden werden: https://fordatis.fraunhofer.de/handle/fordatis/287.2
Langanzeige der Metadaten
DC Element | Wert | Sprache |
---|---|---|
dc.contributor.author | Wicht, Jakob | - |
dc.date.accessioned | 2022-10-26T06:51:20Z | - |
dc.date.available | 2022-10-26T06:51:20Z | - |
dc.date.issued | 2022-10 | - |
dc.identifier.uri | https://fordatis.fraunhofer.de/handle/fordatis/287 | - |
dc.identifier.uri | http://dx.doi.org/10.24406/fordatis/216 | - |
dc.description.abstract | Automated spectrum analysis serves as a troubleshooting tool that helps to diagnose faults in wireless networks like difficult signal propagation conditions as well as coexisting wireless networks. It provides a higher monitoring coverage while requiring less expertise compared to manual spectrum analysis. In this publication, we introduce a data set that can be used to train and evaluate a deep learning model, capable to detect frames of different wireless standards as well as interference between single frames. Since manually labelling a high variety of frames in different environments is too challenging, an artificial data generation pipeline has been developed. The data set consists of 20000 augmented signal segments, each containing a random number of different Wi-Fi and Bluetooth frames, their spectral image representations and labels that describe the position and type of frame within the spectrogram. The dataset contains results of intermediate processing steps that enables the research or teaching community to create new datasets for specific requirements or to provide new interesting examination examples. | en |
dc.description.sponsorship | This work was funded by the Federal Ministry of Education and Research of the Federal Republic of Germany (BMBF) within the PENTA project “SunRISE” (https://www.project-sunrise.eu/) under the Project Number 16ES0974 and in cooperation with the Center for Analytics – Data – Applications (ADA-Center) which is supported by the Bavarian Ministry of Economic Affairs, Regional Development and Energy within the framework of “BAYERN DIGITAL II” (20-3410-2-9-8). | en |
dc.language.iso | en | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | spectrogram data set | en |
dc.subject | wireless network monitoring | en |
dc.subject | spectrum analysis | en |
dc.subject | frame detection | en |
dc.subject | object detection | en |
dc.subject | deep learning | en |
dc.title | Spectrogram Data Set for Deep Learning Based RF-Frame Detection | en |
dc.type | Image | en |
dc.contributor.funder | Bundesministerium für Bildung und Forschung BMBF (Deutschland) | en |
dc.description.technicalinformation | See correspondig publication "Spectrogram Data Set for Deep Learning Based RF-Frame, Jakob Wicht, Ulf Wetzker and Dr. Vineeta Jain". Additional helper scripts are provided at https://gitlab.cc-asp.fraunhofer.de/ifk_public/sunrise/public-mdpi-dataset-helper-scripts/-/tree/dataset_20220711 | en |
dc.relation.issupplementedby | https://gitlab.cc-asp.fraunhofer.de/ifk_public/sunrise/public-mdpi-dataset-helper-scripts/-/tree/dataset_20220711 | - |
dc.relation.references | https://ieeexplore.ieee.org/document/9657084 | - |
fordatis.institute | IIS Fraunhofer-Institut für Integrierte Schaltungen - Institutsteil Entwicklung Adaptiver Systeme EAS | en |
fordatis.project.fhgid | 10-09446-2740-00001 | en |
fordatis.rawdata | false | en |
fordatis.sponsorship.projectid | 16ES0974 | en |
fordatis.sponsorship.projectname | SunRISE | en |
fordatis.sponsorship.ResearchFrameworkProgramm | Penta | en |
fordatis.date.start | 2022-07-11 | - |
fordatis.date.end | 2022-07-11 | - |
Enthalten in den Sammlungen: | IIS Fraunhofer-Institut für Integrierte Schaltungen - Institutsteil Entwicklung Adaptiver Systeme EAS |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
spectrogram_training_data_20220711.zip | 80,73 GB | ZIP | Öffnen/Download |
Versionshistorie
Version | Ressource | Datum | Zusammenfassung |
---|---|---|---|
2 | fordatis/287.2 | 2022-11-23 15:15:11.01 | The data set has been regenerated with two changes. The channel model applied when generating the spectrogram has been improved in terms of variety. Additionally, the number of long CCK and OFDM modulated Wi-Fi frames have been increased. |
1 | fordatis/287 | 2022-10-26 08:51:20.0 |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons