Langanzeige der Metadaten
DC Element | Wert | Sprache |
---|---|---|
dc.contributor.advisor | Krüger, Jörg | - |
dc.contributor.author | Koch, Paul | - |
dc.contributor.author | Schlüter, Marian | - |
dc.contributor.author | Briese, Clemens | - |
dc.contributor.author | Chavan, Vivek | - |
dc.contributor.other | Jagtap, Maulik | - |
dc.date.accessioned | 2023-11-13T09:59:50Z | - |
dc.date.available | 2023-11-13T09:59:50Z | - |
dc.date.issued | 2023-11-02 | - |
dc.identifier.uri | https://fordatis.fraunhofer.de/handle/fordatis/358 | - |
dc.identifier.uri | http://dx.doi.org/10.24406/fordatis/300 | - |
dc.description.abstract | We present MVIP, a novel dataset for multi-modal and multi-view application oriented industrial part recognition. Here we combine a calibrated RGBD multi-view dataset with additional object context such as physical properties, natural language, and super-classes. Our main goal with MVIP is to study and push transferability of various state-of-the-art methods within related downstream tasks towards an efficient deployment of industrial classifiers. Additionally, we intent to push with MVIP research regarding several modality fusion topics, (automated) synthetic data generation, and complex data sampling methods -- combined in a single application oriented benchmark. | en |
dc.language.iso | en | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Multi Modal | en |
dc.subject | Multi View | en |
dc.subject | Classification | en |
dc.subject | Machine Learning | en |
dc.subject | RGB-D | en |
dc.subject | Part Recognition | en |
dc.subject | Industrial | en |
dc.subject | Industry | en |
dc.title | MVIP: A Dataset for Industrial Part Recognition | en |
dc.type | Image | en |
dc.contributor.funder | Bundesministerium für Bildung und Forschung BMBF (Deutschland) | en |
fordatis.group | Produktion | en |
fordatis.institute | IPK Institut für Produktionsanlagen und Konstruktionstechnik | en |
fordatis.rawdata | false | en |
fordatis.sponsorship.FundingProgramme | ReziProK | en |
fordatis.sponsorship.projectid | 033R226 | en |
fordatis.sponsorship.projectname | Sensorische Erfassung, automatisierte Identifikation und Bewertung von Altteilen | en |
fordatis.sponsorship.projectacronym | EIBA | en |
fordatis.sponsorship.ResearchFrameworkProgramm | FONA | en |
Enthalten in den Sammlungen: | Institut für Produktionsanlagen und Konstruktionstechnik IPK |
Dateien zu dieser Ressource:
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons