Hinweis
Dies ist nicht die aktuellste Version der Ressource. Diese kann hier gefunden werden: https://fordatis.fraunhofer.de/handle/fordatis/385.2
Langanzeige der Metadaten
DC Element | Wert | Sprache |
---|---|---|
dc.contributor.author | Durmaz, Ali Riza | - |
dc.contributor.author | Thomas, Akhil | - |
dc.contributor.author | Mishra, Lokesh | - |
dc.contributor.author | Niranjan Murthy, Rachana | - |
dc.contributor.author | Straub, Thomas | - |
dc.date.accessioned | 2024-03-18T11:19:29Z | - |
dc.date.available | 2024-03-18T11:19:29Z | - |
dc.date.issued | 2024 | - |
dc.identifier.uri | https://fordatis.fraunhofer.de/handle/fordatis/385 | - |
dc.identifier.uri | http://dx.doi.org/10.24406/fordatis/329 | - |
dc.description.abstract | This repository contains named-entity recognition (NER) datasets for four materials science and engineering (MSE) publications and utility functions to handle the data. The scope of the scholarly articles used as a basis is crystallographic defects, microstructure, mechanical properties in particular fatigue. Each annotation corresponds to a class in a materials science domain ontology called materials mechanics ontology. This should prospectively enable linking materials knowledge and data to facilitate training neurosymbolic machine learning models. Two dataset variants are published: coarse-granular named-entity recognition (CG-NER) where the annotated concepts are high-level ontological classes fine-granular named-entity recognition (FG-NER) where the annotated concepts are low-level ontological classes Aside from the link to the ontology a characteristic of the dataset is its high degree of of annotation. Namely, 179 distinct ontological classes and 27% of all tokens are annotated in the fine-granular dataset. | en |
dc.description.sponsorship | The authors express their gratitude to the German Federal Ministry of Education and Research (BMBF) for the funding in the scope of the iBain project (13XP5118B) as part of MaterialDigital. | en |
dc.language.iso | en | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Named entity recognition | en |
dc.subject | NER | en |
dc.subject | Materials science and engineering | en |
dc.subject | Ontology | en |
dc.subject | CONLL | en |
dc.subject | TSV | en |
dc.subject.ddc | DDC::000 Informatik, Informationswissenschaft, allgemeine Werke | en |
dc.title | MaterioMiner - An ontology-based text mining dataset for extraction of process-structure-property entities | en |
dc.type | Tabular Data | en |
dc.contributor.funder | Bundesministerium für Bildung und Forschung BMBF (Deutschland) | en |
dc.description.technicalinformation | Please follow the readme.md file. | en |
fordatis.group | Werkstoffe, Bauteile | en |
fordatis.institute | IWM Fraunhofer-Institut für Werkstoffmechanik | en |
fordatis.rawdata | false | en |
fordatis.sponsorship.projectid | 13XP5118B | en |
fordatis.sponsorship.projectname | Intelligent data-guided process design for fatigue-resistant steel components using the example of bainitic microstructure | en |
fordatis.sponsorship.projectacronym | iBain | en |
fordatis.sponsorship.ResearchFrameworkProgramm | MaterialDigital | en |
Enthalten in den Sammlungen: | Fraunhofer-Institut für Werkstoffmechanik IWM |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
materio-miner-1.0.0.zip | Zip file corresponding to release 1.0.0 of the MaterioMiner dataset repository | 570,05 kB | ZIP | Öffnen/Download |
Versionshistorie
Version | Ressource | Datum | Zusammenfassung |
---|---|---|---|
2 | fordatis/385.2 | 2024-08-13 16:28:07.74 | A new version of the ontology is linked which adds descriptions for all classes, normalizes the rdfs:label, and adds owl property characteristics of a few object properties. The data subsets' names are changed to "fine-grained" and "coarse-grained". |
1 | fordatis/385 | 2024-03-18 12:19:29.0 |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons