Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorMüller, Linus-
dc.contributor.authorBätz, Michel-
dc.contributor.authorBerg, André-
dc.contributor.authorGray, Timothy-
dc.contributor.authorGul, Muhammad Shahzeb Khan-
dc.contributor.authorSchinabeck, Christian-
dc.contributor.authorKeinert, Joachim-
dc.contributor.otherKalle, Chetana Avina-
dc.date.accessioned2025-07-10T11:16:50Z-
dc.date.available2025-07-10T11:16:50Z-
dc.date.issued2025-06-
dc.identifier.urihttps://fordatis.fraunhofer.de/handle/fordatis/448-
dc.identifier.urihttp://dx.doi.org/10.24406/fordatis/404-
dc.description.abstractNeural radiance fields (NeRF) and 3D Gaussian splatting (3DGS) use volumetric scene representations to achieve impressive visual results in the field of novel-view synthesis. However, traditional 3D pipelines are dominated by textured meshes, supported by hardware assisted rendering and a huge software ecosystem. We show that mesh-based workflows can also profit from those novel reconstruction methods by evaluating mesh reconstruction algorithms paired with view-dependent textures in terms of texture sharpness, surface accuracy and real-time rendering performance. For that purpose, we employ a modular 3D reconstruction pipeline and use it to benchmark not only publicly available data sets, but additionally four new high-quality data sets of our own. These data sets capture different objects containing both reflective and uniform surface characteristics.en
dc.description.sponsorshipThis work has been supported by the Free State of Bavaria in the DSAI project, by the High Performance Computing Center (NHR@FAU) of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) with project b199dc (Opt-3D-SSO) and by the German Federal Ministry for Economic Affairs and Climate Action under grants 01MT22002A and 16KN116621.en
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/en
dc.titleBenchmarking Learnable Mesh and Texture Representations for Immersive Digital Twinsen
dc.typeImageen
dc.contributor.funderBayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie StMWien
dc.contributor.funderBundesministerium für Wirtschaft und Klimaschutz BMWK (Deutschland)en
fordatis.instituteIIS Fraunhofer-Institut für Integrierte Schaltungenen
fordatis.rawdatafalseen
fordatis.sponsorship.projectnameOptimizing neural 3D reconstruction rendering quality for small-sized objectsen
fordatis.sponsorship.projectacronymOpt-3D-SSOen
Enthalten in den Sammlungen:Fraunhofer-Institut für Integrierte Schaltungen IIS



Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons