Langanzeige der Metadaten
DC Element | Wert | Sprache |
---|---|---|
dc.contributor.author | Müller, Linus | - |
dc.contributor.author | Bätz, Michel | - |
dc.contributor.author | Berg, André | - |
dc.contributor.author | Gray, Timothy | - |
dc.contributor.author | Gul, Muhammad Shahzeb Khan | - |
dc.contributor.author | Schinabeck, Christian | - |
dc.contributor.author | Keinert, Joachim | - |
dc.contributor.other | Kalle, Chetana Avina | - |
dc.date.accessioned | 2025-07-10T11:16:50Z | - |
dc.date.available | 2025-07-10T11:16:50Z | - |
dc.date.issued | 2025-06 | - |
dc.identifier.uri | https://fordatis.fraunhofer.de/handle/fordatis/448 | - |
dc.identifier.uri | http://dx.doi.org/10.24406/fordatis/404 | - |
dc.description.abstract | Neural radiance fields (NeRF) and 3D Gaussian splatting (3DGS) use volumetric scene representations to achieve impressive visual results in the field of novel-view synthesis. However, traditional 3D pipelines are dominated by textured meshes, supported by hardware assisted rendering and a huge software ecosystem. We show that mesh-based workflows can also profit from those novel reconstruction methods by evaluating mesh reconstruction algorithms paired with view-dependent textures in terms of texture sharpness, surface accuracy and real-time rendering performance. For that purpose, we employ a modular 3D reconstruction pipeline and use it to benchmark not only publicly available data sets, but additionally four new high-quality data sets of our own. These data sets capture different objects containing both reflective and uniform surface characteristics. | en |
dc.description.sponsorship | This work has been supported by the Free State of Bavaria in the DSAI project, by the High Performance Computing Center (NHR@FAU) of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) with project b199dc (Opt-3D-SSO) and by the German Federal Ministry for Economic Affairs and Climate Action under grants 01MT22002A and 16KN116621. | en |
dc.language.iso | en | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | en |
dc.title | Benchmarking Learnable Mesh and Texture Representations for Immersive Digital Twins | en |
dc.type | Image | en |
dc.contributor.funder | Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie StMWi | en |
dc.contributor.funder | Bundesministerium für Wirtschaft und Klimaschutz BMWK (Deutschland) | en |
fordatis.institute | IIS Fraunhofer-Institut für Integrierte Schaltungen | en |
fordatis.rawdata | false | en |
fordatis.sponsorship.projectname | Optimizing neural 3D reconstruction rendering quality for small-sized objects | en |
fordatis.sponsorship.projectacronym | Opt-3D-SSO | en |
Enthalten in den Sammlungen: | Fraunhofer-Institut für Integrierte Schaltungen IIS |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
CameraArray_down2.zip | 7,75 GB | ZIP | Öffnen/Download | |
CameraArray_down4.zip | 2,17 GB | ZIP | Öffnen/Download | |
CameraArray_down8.zip | 573,63 MB | ZIP | Öffnen/Download | |
CameraArray_orig.zip | 25,28 GB | ZIP | Öffnen/Download | |
Lamp_down2.zip | 3,58 GB | ZIP | Öffnen/Download | |
Lamp_down4.zip | 958,21 MB | ZIP | Öffnen/Download | |
Lamp_down8.zip | 244,15 MB | ZIP | Öffnen/Download | |
Lamp_orig.zip | 12,87 GB | ZIP | Öffnen/Download | |
PencilStand_down2.zip | 5,44 GB | ZIP | Öffnen/Download | |
PencilStand_orig.zip | 19,24 GB | ZIP | Öffnen/Download | |
PencilStand_down4.zip | 1,46 GB | ZIP | Öffnen/Download | |
PencilStand_down8.zip | 374,53 MB | ZIP | Öffnen/Download | |
RattleCar_down2.zip | 4,89 GB | ZIP | Öffnen/Download | |
RattleCar_down4.zip | 1,33 GB | ZIP | Öffnen/Download | |
RattleCar_down8.zip | 340,47 MB | ZIP | Öffnen/Download | |
RattleCar_orig.zip | 17,41 GB | ZIP | Öffnen/Download |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons