Files in This Item:
FileDescriptionSizeFormat 
InVar_100_Class_Metadata.csv11,17 kBCSVDownload/Open
image_data.zip30,76 GBZIPDownload/Open
InVar-100_Datasheet_V2.pdf6,64 MBAdobe PDFPreviewDownload/Open

Abstract

Classification Keywords Relationships Fraunhofer Group

Version History
Version Item Date Summary
2 fordatis/329.2 2023-08-14 11:46:31.857 The data repository has been updated for the camera-ready submission of the ICCV 2023 paper: Towards Realistic Evaluation of Industrial Continual Learning Scenarios with an Emphasis on Energy Consumption and Computational Footprint.
1 fordatis/329 2023-06-19 13:59:32.0 Please use only the updated data under https://fordatis.fraunhofer.de/handle/fordatis/329.2.

This item is licensed under a Creative Commons License Creative Commons